Presentation EXPRESS Physical Science X

The weight lifter applies a large force to hold the barbell over his head. Because the barbell is-

DOK question:

Construct a visual representation of what is happening here.

Presentation EXPRESS Physical Science X

What Is Work?

When does a force do work?

For a force to do work on an object, some of the force-

14.1 Work and Power

Presentation Physical Science X

14.1 Work and Power

Work

X

Calculating Work

Calculating Work

Units of Work

When using SI units in the work formula, the force is in newtons, and distance is in meters.

The joule (J) is-

DOK question:

Construct another example of combining units utilizing previous units (m, s, or s²).

Calculating Work

Using the Work Formula

A weight lifter raises a 1600-newton barbell to a height of 2.0 meters.

What Is Power?

How are work and power related?

14.1 Work and Power

X

Calculating Power

Calculating Power

When using SI units in the power formula, work is measured in joules (J), and time is measured in seconds (s).

The SI unit of power is –

DOK question:

Construct another example of combining units utilizing previous units (m, s, or s²).

Calculating Power

X

 Your family is moving to a new apartment.
While lifting a box 1.5 m straight up to put it on a truck, you exert an upward force of 200 N for 1.0 s. How much power is required to do this?

Calculating Power

X

2. You lift a book from the floor to a bookshelf 1.0 m above the ground. How much power is used if the upward force is 15.0 N and you do the work in 2.0 s?

Calculating Power

X

3. You apply a horizontal force of 10.0 N to pull a wheeled suitcase at a constant speed of 0.5 m/s across flat ground. How much power is used? (*Hint:* The suitcase moves 0.5 m/s. Consider how much work the force does each second and how work is related to power.)

James Watt and Horsepower

Another common unit of power is the horsepower. One horsepower (hp) is –

Assessment Questions

- In which of the following cases is work being done on an object?
 - a. pushing against a locked door
 - b. suspending a heavy weight with a strong chain
 - c. pulling a trailer up a hill
 - d. carrying a box down a corridor

Assessment Questions

- A tractor exerts a force of 20,000 newtons to move a trailer 8 meters. How much work was done on the trailer?
 - a. 2,500 J
 - b. 4,000 J
 - c. 20,000 J
 - d. 160,000 J

Assessment Questions

- A car exerts a force of 500 newtons to pull a boat 100 meters in 10 seconds. How much power does the car use?
 - a. 5000 W
 - b. 6000 W
 - c. 50 W
 - d. 1000 W

Assessment Questions

4. One horsepower is a unit of power equal to

- <mark>a. 0.7</mark>46 W.
- b. 1.0 W.
- c. 746 W.
- d. 2,000 W.

