14.3 Mechanical Advantage and Efficiency

PresentationEXPRESS Physical Science

X

A nutcracker is a machine that converts the input force applied to it into a larger force capable of cracking a nut.

Because it increases force, the nutcracker has a mechanical advantage greater than 1.

Mechanical Advantage

How does the actual mechanical advantage of a machine compare to its ideal mechanical advantage?

The **mechanical advantage** of a machine is the number of times that the machine increases an input force.

Because friction is always present, the actual mechanical advantage of a machine is always less than the ideal mechanical advantage.

Mechanical Advantage

Actual Mechanical Advantage

- The mechanical advantage determined by measuring the actual forces acting on a machine is the actual mechanical advantage.
- The **actual mechanical advantage** (AMA) equals the ratio of the output force to the input force.

Mechanical Advantage

A loading ramp is a machine used to move heavy items into a truck.

The mechanical advantage of a ramp with a rough surface is less than that of a similar smooth ramp because a greater force is needed to overcome friction.

Actual Mechanical Advantage

Actual mechanical advantage = $\frac{\text{Output force}}{\text{Input force}}$

Mechanical Advantage

Ideal Mechanical Advantage

The **ideal mechanical advantage** (IMA) of a machine is the mechanical advantage in the absence of friction.

Because friction reduces mechanical advantage, engineers often design machines that use lowfriction materials and lubricants.

14.3 Mechanical Advantage and Efficiency

Presentation EXPRESS Physical Science

X

Calculating Mechanical Advantage

Ideal Mechanical Advantage

Ideal mechanical advantage =

Input distance Output distance

Presentation Physical Science

X

Math > Practice

Calculating Mechanical Advantage

1. A student working in a grocery store after school pushes several grocery carts together along a ramp. The ramp is 3 meters long and rises 0.5 meter. What is the ideal mechanical advantage of the ramp?

Presentation Physical Science

X

Math > Practice

Calculating Mechanical Advantage

1. A student working in a grocery store after school pushes several grocery carts together along a ramp. The ramp is 3 meters long and rises 0.5 meter. What is the ideal mechanical advantage of the ramp?

Answer: IMA = Input distance/Output distance IMA = 3 m/0.5 m = 6

Calculating Mechanical Advantage

X

2. A construction worker moves a crowbar through a distance of 0.50 m to lift a load 0.05 m off of the ground. What is the IMA of the crowbar?

Calculating Mechanical Advantage

X

2. A construction worker moves a crowbar through a distance of 0.50 m to lift a load 0.05 m off of the ground. What is the IMA of the crowbar?

Answer: IMA = Input distance/Output distance IMA = 0.5 m/0.05 m = 10

Presentation Physical Science

Calculating Mechanical Advantage

X

3. The IMA of a simple machine is 2.5. If the output distance of the machine is 1.0 m, what is the input distance?

Calculating Mechanical Advantage

X

3. The IMA of a simple machine is 2.5. If the output distance of the machine is 1.0 m, what is the input distance?

Answer: Input distance = (IMA)(Output distance)Input distance = (2.5)(1.0 m) = 2.5 m

Efficiency

Why is the efficiency of a machine always less than 100 percent?

The percentage of the work input that becomes work output is the **efficiency** of a machine.

Because there is always some friction, the efficiency of any machine is always less than 100 percent.

Efficiency

Efficiency is usually expressed as a percentage.

Efficiency Efficiency = $\frac{\text{Work output}}{\text{Work input}} \times 100\%$

For example, if the efficiency of a machine is 75 percent, then you know that 75 percent of the work input becomes work output.

Efficiency

If a machine requires 10.0 J of work input to operate, then the work output is 75% of 10.0 J.

Work output = $\frac{\text{Work input} \times \text{Efficiency}}{100\%}$

Work output = $\frac{10.0 \text{ J} \times 75\%}{100\%}$ = 7.5 J

- Which statement about the actual mechanical advantage of a machine is true?
 - a. The actual mechanical advantage is greater than one if the input force is greater than the output force.
 - b. The actual mechanical advantage of a machine is greater than its ideal mechanical advantage when the output force is greater than the input force.
 - The actual mechanical advantage of a machine is always less than its ideal mechanical advantage.
 - d. The actual mechanical advantage of a machine is never affected by friction.

- Which statement about the actual mechanical advantage of a machine is true?
 - a. The actual mechanical advantage is greater than one if the input force is greater than the output force.
 - b. The actual mechanical advantage of a machine is greater than its ideal mechanical advantage when the output force is greater than the input force.
 - The actual mechanical advantage of a machine is always less than its ideal mechanical advantage.
 - d. The actual mechanical advantage of a machine is never affected by friction.
 - ANS: C

- 2. If a lever raises a large rock 0.1 meters when the other end of the lever moves downward 2 meters, what is the ideal mechanical advantage of the lever?
 - a. 0.05
 - b. 0.5
 - c. 2
 - d. 20

Assessment Questions

- 2. If a lever raises a large rock 0.1 meters when the other end of the lever moves downward 2 meters, what is the ideal mechanical advantage of the lever?
 - a. 0.05
 - b. 0.5
 - c. 2
 - d. 20

ANS: D

- 3. A machine is used to accomplish 300 J of work. If the efficiency of the machine is 60 percent, what is the necessary work input?
 - a. 180 J
 - b. 360 J
 - c. 500 J
 - d. 750 J

- 3. A machine is used to accomplish 300 J of work. If the efficiency of the machine is 60 percent, what is the necessary work input?
 - a. 180 J
 - b. 360 J
 - c. 500 J
 - d. 750 J

ANS: A

 The efficiency of any machine is less than 100% because of losses due to friction.

True False

 The efficiency of any machine is less than 100% because of losses due to friction.

True False

ANS: T

