A nutcracker is a machine that converts the input force applied to it into a larger force capable of cracking a nut.
Because it increases force, the nutcracker has a mechanical advantage greater than 1.

Mechanical Advantage

©
How does the actual mechanical advantage of a machine compare to its ideal mechanical advantage?
The mechanical advantage of a machine is the number of times that the machine increases an input force.

0
Because friction is always present, the actual mechanical advantage of a machine is always less than the ideal mechanical advantage.

Mechanical Advantage

Actual Mechanical Advantage
The mechanical advantage determined by measuring the actual forces acting on a machine is the actual mechanical advantage.
The actual mechanical advantage (AMA) equals the ratio of the output force to the input force.

Mechanical Advantage

A loading ramp is a machine used to move heavy items into a truck.

The mechanical advantage of a ramp with a rough surface is less than that of a similar smooth ramp because a greater force is needed to overcome friction.

Actual Mechanical Advantage

$$
\text { Actual mechanical advantage }=\frac{\text { Output force }}{\text { Input force }}
$$

Mechanical Advantage

Ideal Mechanical Advantage
The ideal mechanical advantage (IMA) of a machine is the mechanical advantage in the absence of friction.

Because friction reduces mechanical advantage, engineers often design machines that use lowfriction materials and lubricants.

Calculating Mechanical Advantage

- Ideal Mechanical Advantage

$$
\text { Ideal mechanical advantage }=\frac{\text { Input distance }}{\text { Output distance }}
$$

Calculating Mechanical Advantage

1. A student working in a grocery store after school pushes several grocery carts together along a ramp. The ramp is 3 meters long and rises 0.5 meter. What is the ideal mechanical advantage of the ramp?

Calculating Mechanical Advantage

1. A student working in a grocery store after school pushes several grocery carts together along a ramp. The ramp is 3 meters long and rises 0.5 meter. What is the ideal mechanical advantage of the ramp?

Answer:
IMA = Input distance/Output distance
$\mathrm{IMA}=3 \mathrm{~m} / 0.5 \mathrm{~m}=6$

Calculating Mechanical Advantage

2. A construction worker moves a crowbar through a distance of 0.50 m to lift a load 0.05 m off of the ground. What is the IMA of the crowbar?

Calculating Mechanical Advantage

2. A construction worker moves a crowbar through a distance of 0.50 m to lift a load 0.05 m off of the ground. What is the IMA of the crowbar?

Answer:
IMA = Input distance/Output distance $\mathrm{IMA}=0.5 \mathrm{~m} / 0.05 \mathrm{~m}=10$
3. The IMA of a simple machine is 2.5 . If the output distance of the machine is 1.0 m , what is the input distance?

Calculating Mechanical Advantage

3. The IMA of a simple machine is 2.5 . If the output distance of the machine is 1.0 m , what is the input distance?

Answer:
Input distance $=(\mathrm{IMA})$ (Output distance)
Input distance $=(2.5)(1.0 \mathrm{~m})=2.5 \mathrm{~m}$

Efficiency

0
Why is the efficiency of a machine always less than 100 percent?
The percentage of the work input that becomes work output is the efficiency of a machine.
0
Because there is always some friction, the efficiency of any machine is always less than 100 percent.

Efficiency

Efficiency is usually expressed as a percentage.
Efficiency

$$
\text { Efficiency }=\frac{\text { Work output }}{\text { Work input }} \times 100 \%
$$

For example, if the efficiency of a machine is 75 percent, then you know that 75 percent of the work input becomes work output.

Efficiency

If a machine requires 10.0 J of work input to operate, then the work output is 75% of 10.0 J .

Work output $=\frac{\text { Work input } \times \text { Efficiency }}{100 \%}$
Work output $=\frac{10.0 \mathrm{~J} \times 75 \%}{100 \%}=7.5 \mathrm{~J}$

Assessment Questions

1. Which statement about the actual mechanical advantage of a machine is true?
a. The actual mechanical advantage is greater than one if the input force is greater than the output force.
b. The actual mechanical advantage of a machine is greater than its ideal mechanical advantage when the output force is greater than the input force.
c. The actual mechanical advantage of a machine is always less than its ideal mechanical advantage.
d. The actual mechanical advantage of a machine is never affected by friction.

Assessment Questions

1. Which statement about the actual mechanical advantage of a machine is true?
a. The actual mechanical advantage is greater than one if the input force is greater than the output force.
b. The actual mechanical advantage of a machine is greater than its ideal mechanical advantage when the output force is greater than the input force.
c. The actual mechanical advantage of a machine is always less than its ideal mechanical advantage.
d. The actual mechanical advantage of a machine is never affected by friction.

> ANS: C

Assessment Questions

2. If a lever raises a large rock 0.1 meters when the other end of the lever moves downward 2 meters, what is the ideal mechanical advantage of the lever?
a. 0.05
b. 0.5
c. 2
d. 20

Assessment Questions

2. If a lever raises a large rock 0.1 meters when the other end of the lever moves downward 2 meters, what is the ideal mechanical advantage of the lever?
a. 0.05
b. 0.5
c. 2
d. 20

ANS: D

Assessment Questions

3. A machine is used to accomplish 300 J of work. If the efficiency of the machine is 60 percent, what is the necessary work input?
a. 180 J
b. 360 J
c. 500 J
d. 750 J

Assessment Questions

3. A machine is used to accomplish 300 J of work. If the efficiency of the machine is 60 percent, what is the necessary work input?
a. 180 J
b. 360 J
c. 500 J
d. 750 J

ANS: A

Assessment Questions

1. The efficiency of any machine is less than 100% because of losses due to friction.

True
False

Assessment Questions

1. The efficiency of any machine is less than 100% because of losses due to friction.

True
False

ANS: T

